SECOND ORDER DIFFERENTIAL EQUATIONS (theory)

Equation that has the form : $\quad y^{(n)}=\mathbf{f}(\mathbf{x})$

Order of these differential equation is reduce by the direct integration.

Equation that has the form : $F\left(x, y^{k}, y^{n}\right)=0$
These equations deal with replacement: $y^{k}=p$, here is $y^{k+1}=p^{`}$ etc. $\quad\left(y^{`}=p \rightarrow y^{`}=p^{`} \rightarrow y^{\prime `}=p^{`} \ldots \ldots.\right)$

\section*{Equation that has the form : $\quad F\left(y, y^{`}, y^{`}, \ldots, y^{(n)}\right)$}

These equations deal with replacement: $\mathbf{y} `=\mathbf{p}$, but here we have to be careful, because: $\mathrm{y}^{`}=\mathrm{p} \frac{d p}{d y},\left(\mathrm{y}^{`}=\mathrm{p} \mathrm{p}^{`}\right)$
$\underline{\text { Equation that has the form : } y^{` `}+a(x) y^{`}+b(x) y=f(x)}$
Look at the appropriate homogeneous equation: $\mathbf{y}^{`}+\mathbf{a}(\mathbf{x}) \mathbf{y}^{`}+\mathbf{b}(\mathbf{x}) \mathbf{y}=\mathbf{0}$
If you know one particular solution $\mathrm{y}_{1}(\mathrm{x})$ of this equation, then another solution we can find:
$\mathrm{y}_{2}(\mathrm{x})=\mathrm{y}_{1}(\mathrm{x}) \int \frac{e^{-\int a(x) d x}}{y_{1}{ }^{2}(x)} d x$, and the solution of homogeneous equation will be: $\mathrm{y}(\mathrm{x})=\mathrm{c}_{1} \mathrm{y}_{1}(\mathrm{x})+\mathrm{c}_{2} \mathrm{y}_{2}(\mathrm{x})$
Then solve home inhomogenous equation by undetermined coefficients or by variation of parameters .

Euler equations

$$
x^{n} y^{(n)}+a_{1} x^{n-1} y^{(n-1)}+\ldots+a_{n-1} x y^{`}+a_{n} y=0 \quad \text { or } \quad x^{n} y^{(n)}+a_{1} x^{n-1} y^{(n-1)}+\ldots+a_{n-1} x y^{`}+a_{n} y=f(x)
$$

Replacement: $\mathbf{x}=\mathbf{e}^{\mathbf{t}}$, and from here is: $\mathbf{y}=\frac{y^{`}}{e^{t}} ; \quad \mathrm{y}^{`}=\frac{y_{t}{ }^{`}{ }^{`}-y_{t}{ }^{`}}{e^{2 t}} ; \quad \mathrm{y}^{{ }^{`}{ }^{\prime}=}=\frac{y_{t}{ }^{`}{ }^{`}-3 y_{t}{ }^{`}+2 y_{t}{ }^{`}}{e^{3 t}} \ldots .$. etc.
Because:
$\mathrm{y}^{`}=\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{y_{t}^{\prime}}{e^{t}} \longrightarrow \mathrm{y}^{`}=\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{y_{t}}{e^{t}}\right)}{\frac{d x}{d t}}=e t c \ldots$. First, we solve homogeneous Euler's equation, and then solve inhomogenous with undetermined coefficients or variation of parameters .

Linear homogeneous equation with constant coefficient (second order)

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{2}=0
$$

First, write down the characteristic equation:

$$
\lambda^{2}+a_{1} \lambda+a_{2}=0
$$

Depending on the characteristic equation solutions, we have three differentiate cases:

1) $\quad \lambda_{1}$ and λ_{2} are real and different, it is: $\mathrm{y}(\mathrm{x})=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x}$
2) $\quad \lambda_{1}$ and λ_{2} are real and equal solutions, it is: $\mathrm{y}(\mathrm{x})=c_{1} e^{\lambda_{1} x}+\mathrm{x} c_{2} e^{\lambda_{2} x}$
3) $\quad \lambda_{1}$ and λ_{2} are complex conjugate: $\lambda_{1}=\mathrm{a}+\mathrm{bi}, \lambda_{2}=\mathrm{a}$-bi , then: $\quad \mathrm{y}(\mathrm{x})=\mathrm{c}_{1} \mathrm{e}^{\mathrm{ax}} \cos b \mathrm{x}+\mathrm{c}_{2} \mathrm{e}^{\mathrm{ax}} \operatorname{sinbx}$

Linear nonhomogeneous equation with constant coefficient (second order)

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{2}=f(x)
$$

First we solve homogeneous equation $y^{\prime \prime}+a_{1} y^{`}+a_{2}=0$ and find $\mathrm{y}=\mathrm{c}_{1}(\mathrm{x}) \mathrm{y}_{1}+\mathrm{c}_{2}(\mathrm{x}) \mathrm{y}_{2}$

1) Method variation of parameters

A system:

$$
\begin{aligned}
& \mathrm{c}^{\prime}{ }_{1}(\mathrm{x}) \mathrm{y}_{1}+\mathrm{c}^{\prime}{ }_{2}(\mathrm{x}) \mathrm{y}_{2}=0 \\
& \mathrm{c}^{\prime}{ }_{1}(\mathrm{x}) \mathrm{y}^{\prime}{ }_{1}+\mathrm{c}^{\prime}{ }_{2}(\mathrm{x}) \mathrm{y}^{\prime}{ }_{2}=\mathrm{f}(\mathrm{x})
\end{aligned}
$$

Solve the system " by c_{1} and c_{2} ", this solutions replace in $y=c_{1}(x) y_{1}+c_{2}(x) y_{2}$
Here we have to be careful, because: $\mathrm{c}_{1}=\mathrm{c}_{1}(\mathrm{x})$ and $\mathrm{c}_{2}=\mathrm{c}_{2}(\mathrm{x})$
2) Method undetermined coefficients
I) If $f(x)=e^{a x} P_{n}(x)$ then:
i) a is not the root of the characteristic equation, then $y=e^{a x} Q_{n}(x)$, where $Q_{n}(x)$ is polynomial of degree n with undetermined coefficients
ii) a is the root of the characteristic equation, then $y=x^{m} e^{a x} Q_{n}(x)$, where m has same root order as \mathbf{a}

II) If $f(x)=e^{a x}\left[P_{n}(x) \operatorname{cosb} x+Q_{k}(x) \operatorname{sinbx}\right]$ then:
i) If $\mathbf{a} \pm \mathbf{b i}$ are not the roots of characteristic equation, then: $\mathbf{y}=\mathbf{e}^{\mathrm{ax}}\left[\mathbf{S}_{\mathrm{N}}(\mathbf{x}) \boldsymbol{\operatorname { c o s b x }}+\mathbf{T}_{\mathrm{N}}(\mathbf{x}) \operatorname{sinbx}\right]$ where is $\mathrm{N}=\max (\mathrm{n}, \mathrm{k})$
ii) If $\mathbf{a} \pm \mathbf{b i}$ are the roots of characteristic equation, then: $\mathbf{y}=\mathbf{x}^{m} \mathbf{e}^{\mathbf{a x}}\left[\mathbf{S}_{\mathrm{N}}(\mathbf{x}) \cos \mathbf{b x}+\mathbf{T}_{\mathrm{N}}(\mathbf{x}) \sin \mathbf{x}\right]$ where m has same root order as $\mathbf{a} \pm \mathbf{b i}$

