SECOND ORDER DIFFERENTIAL EQUATIONS (theory)

Equation that has the form : $y^{(n)} = f(x)$

Order of these differential equation is reduce by the direct integration.

Equation that has the form : $F(x, y^k, y^n) = 0$

These equations deal with replacement: $y^k = p$, here is $y^{k+1} = p$ etc. $(y^* = p \longrightarrow y^{**} = p^* \longrightarrow y^{**} = p^* \dots)$

Equation that has the form : $F(y,y^{,y^{,}},...,y^{(n)})$

These equations deal with replacement: $\mathbf{y} = \mathbf{p}$, but here we have to be careful, because: $\mathbf{y} = \mathbf{p} \frac{dp}{dy}$, ($\mathbf{y} = \mathbf{p} \mathbf{p}$)

Equation that has the form : y'' + a(x)y' + b(x)y = f(x)

Look at the appropriate homogeneous equation: y'' + a(x)y' + b(x)y=0

If you know one particular solution $y_1(x)$ of this equation, then another solution we can find:

 $y_2(x) = y_1(x) \int \frac{e^{-\int a(x)dx}}{y_1^2(x)} dx$, and the solution of homogeneous equation will be: $y(x) = c_1 y_1(x) + c_2 y_2(x)$ Then solve home inhomogenous equation by **undetermined coefficients** or by **variation of parameters**.

Euler equations

$$\mathbf{x}^{n}\mathbf{y}^{(n)} + \mathbf{a}_{1}\mathbf{x}^{n-1}\mathbf{y}^{(n-1)} + \dots + \mathbf{a}_{n-1}\mathbf{x}\mathbf{y}^{*} + \mathbf{a}_{n}\mathbf{y} = \mathbf{0} \quad \text{or} \quad \mathbf{x}^{n}\mathbf{y}^{(n)} + \mathbf{a}_{1}\mathbf{x}^{n-1}\mathbf{y}^{(n-1)} + \dots + \mathbf{a}_{n-1}\mathbf{x}\mathbf{y}^{*} + \mathbf{a}_{n}\mathbf{y} = \mathbf{f}(\mathbf{x})$$

Replacement: $\mathbf{x} = \mathbf{e}^{t}$, and from here is: $\mathbf{y}^{*} = \frac{y_{t}^{*}}{e^{t}}; \quad \mathbf{y}^{*} = \frac{y_{t}^{*} - y_{t}^{*}}{e^{2t}}; \quad \mathbf{y}^{*} = \frac{y_{t}^{*} - 3y_{t}^{*} + 2y_{t}^{*}}{e^{3t}} \dots \text{etc.}$

Because:

$$y = \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{y'_t}{e^t}$$
 \longrightarrow $y' = \frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(\frac{y_t}{e^t})}{\frac{dx}{dt}} = etc...$ First, we solve homogeneous Euler's equation, and

then solve inhomogenous with undetermined coefficients or variation of parameters .

$$y'' + a_1 y' + a_2 = 0$$

First, write down the characteristic equation:

$$\lambda^2 + a_1\lambda + a_2 = 0$$

Depending on the characteristic equation solutions, we have three differentiate cases:

- 1) λ_1 and λ_2 are real and different, it is: $y(x) = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$
- 2) λ_1 and λ_2 are real and equal solutions, it is: $y(x) = c_1 e^{\lambda_1 x} + x c_2 e^{\lambda_2 x}$
- 3) λ_1 and λ_2 are complex conjugate: $\lambda_1 = a + bi$, $\lambda_2 = a bi$, then: $y(x) = c_1 e^{ax} cosbx + c_2 e^{ax} sinbx$

Linear nonhomogeneous equation with constant coefficient (second order)

$$y'' + a_1 y' + a_2 = f(x)$$

First we solve homogeneous equation $y'' + a_1y' + a_2 = 0$ and find $y=c_1(x)y_1+c_2(x)y_2$

1) Method variation of parameters

A system:

$$c'_{1}(x)y_{1}+c'_{2}(x)y_{2}=0$$

 $c'_{1}(x)y'_{1}+c'_{2}(x)y'_{2}=f(x)$

Solve the system "by c_1 and c_2 ", this solutions replace in $y = c_1(x)y_1+c_2(x)y_2$

Here we have to be careful, because: $c_1 = c_1(x)$ and $c_2 = c_2(x)$

2) Method undetermined coefficients

I) If $f(x)=e^{ax}P_n(x)$ then:

- i) **a** is not the root of the characteristic equation, then $y=e^{ax}Q_n(x)$, where $Q_n(x)$ is polynomial of degree n with **undetermined coefficients**
- ii) **a** is the root of the characteristic equation, then $y = x^m e^{ax}Q_n(x)$, where m has same root order as **a**

II) If $f(x)=e^{ax}[P_n(x)\cos bx+Q_k(x)\sin bx]$ then:

- i) If $\mathbf{a} \pm \mathbf{b}\mathbf{i}$ are not the roots of characteristic equation, then: $\mathbf{y} = \mathbf{e}^{\mathbf{a}\mathbf{x}}[\mathbf{S}_{N}(\mathbf{x})\mathbf{cosbx}+\mathbf{T}_{N}(\mathbf{x})\mathbf{sinbx}]$ where is $N=\max(n,k)$
- ii) If $\mathbf{a} \pm \mathbf{b}\mathbf{i}$ are the roots of characteristic equation, then: $\mathbf{y} = \mathbf{x}^m e^{\mathbf{a}\mathbf{x}}[\mathbf{S}_N(\mathbf{x})\mathbf{cosbx} + \mathbf{T}_N(\mathbf{x})\mathbf{sinbx}]$ where m has same root order as $\mathbf{a} \pm \mathbf{b}\mathbf{i}$